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Abstract

In this paper we consider a general formulation of a discrete-time filtering problem
for descriptor systems. It is shown that the nature of descriptor systems leads directly
to the need to examine singular estimation problems. Using a "dual approach" to
estimation we derive a so-called "3-block" form for the optimal filter and a corresponding
3-block Riccati equation for a general class of time-varying descriptor models which
need not represent a well-posed system in that the dynamics may be either over- or
under-constrained. Specializing to the time-invariant case we examine the asymptotic
properties of the 3-block filter, and in particular analyze in detail the resulting 3-block
algebraic Riccati equation, generalizing significantly the results in [23, 28, 33]. Finally,
the noncausal nature of discrete-time descriptor dynamics implies that future dynamics
may provide some information about the present state. We present a modified form for
the descriptor Kalman filter that takes this information into account.
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1 Introduction

In this paper, we address the problem of recursive estimation for a general class of descriptor
systems. Specifically the systems that we consider are of the forml:

Ek+lx(k + 1) = AkX(k) + u(k), k > 0 (1.1)

y(k + 1) = Ck+l(k + 1) + r(k), k > 0 (1.2)

where the matrix Ek+l is lk X nk+l, Ak is lk x nk, and Ck+j is Pk+l X nk+1. Here u and r
are zero-mean white Gaussian noise sequences with

r(k) r() )ST Rk ) (1.3)

where M(.) denotes the mean and 6(k) = 1 if k = 0 and 0 otherwise. Also we assume
that x(0) is a Gaussian random variable independent of (uT(k),rT(k))T), with mean Z0
and covariance Po, independent of (uT(k), rT(k))T. The problem that we consider in this
paper is the recursive estimation of z(k).

Several aspects of this model deserve comment. The study of descriptor systems, of
course, has a rich and growing literature [9, 10, 18]. Some of the motivation for this activity
comes from applications in which the natural descriptions of systems involve both dynamics
and constraints among variables, leading to models of the form (1.1) with a possibly singular
matrix E on the left-hand side. Furthermore in studies such as [35] it is argued that models
of this type are a natural starting point for modeling when we are attempting to deduce
relations among dynamically evolving quantities rather then imposing causative structure.
Indeed in [19]-[21] as well as in our previous work [23]-[29], it has been emphasized that
descriptor models such as (1.1) can be used to describe noncausal phenomena -e.g. where
the variable "k" represents space rather than time- which typically involve such dynamics
together with boundary conditions. In fact in a subsequent paper [26] the results that we
develop here are used for constructing efficient smoothing algorithms for such boundary-
value models.

A second point to note concerning the model (1.1) is that it allows the possiblity that
the dimensions of the problem- the number Ik of dynamic constraints, the number pk of
measurements, and the dimension nk of z(k)- may vary with k. As we shall see, this does
not cause any difficulty in our analysis, but this is not our reason for including this level of
generality. A better reason is that such a situation arises naturally in "recursive" descrip-
tions of two-dimensional (2-D) phenomena. Specifically, as shown in [16], there are very
natural directions of recursion for boundary-value models, namely in from or out towards
the boundary. The inward propagation, for example, involves propagating boundary con-
ditions into the domain of interest. In 1-D problems, where the boundary consists of two
points, inward propagation leads to a new boundary which has also two points. In 2-D how-
ever, the boundary of a compact domain changes size as we shrink or expand the domain.

1TIie indexing choices in (1.1)-(1.2) have been mnade in part to simplify the snu)sequellt. developmnelt..
For example, the use of the notation of r(k) in (1.2) rather than r(k + 1) is consistent with and simplifies
(1.3). Specifically with these choices, the noises u(k) and r(k) are possibly correlated, and both a.ffect the
information we acquire on z(k + 1).
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Thus if we think of x(k) as representing the values of a process along such a shrinking or
expanding boundary, we see that we have no choice but to deal with changing dimensional-
ity. While we do not explicitly focus on such problems in this paper, our analysis contains
all the elements necessary to make it directly applicable to 2-D estimation problems.

Another reason for allowing the possibility of changing dimensionality is one that has
other even more important implications. Specifically, rather than thinking of (1.1) as de-
scribing system dynamics, we may wish to think of it as providing a set of possibly noisy
constraints on the behavior of x. From this perspective the information in (1.1) plays es-
sentially the same role as that in (1.2), the only apparent difference being that each piece
of information in (1.1) concerns x at two consecutive points in time rather than the single-
point-in-time nature of the information (1.2). From this perspective allowing a change in
dimensionality corresponds to allowing the possibility that at some points in time we might
have more pieces of information than at others. Also, this perspective opens the question
of the order in which these pieces of information are incorporated. For the most part in
this paper we will use the obvious ordering, namely we use (1.1) through time k to estimate
z(k). However there are other possibilities. In particular we also consider in this paper the
use of (1.1) over the entire time interval of interest, together with (1.2) through time k to
estimate z(k). As we will see, when Ek = I, there is no difference between these two cases,
but there is a difference when one considers the case of Ek singular, again emphasizing
the noncausality of such models. Furthermore, the possible singularity of Ek coupled with
the interpretation of (1.1) as an additional source of "measurement" data, leads directly to
the need to consider the possibility that some "measurements" are perfect. Thus, in our
formulation we allow the possibility that Rk in (1.3) is singular.

Recursive estimation for descriptor systems has been the subject of several studies in
recent years [8, 13, 23, 24, 28, 33]. In particular in [24] we addressed this problem in the
context of optimal smoothing for well-posed, constant coefficient boundary-value descriptor
systems, i.e. systems of the form (1.1)-(1.2) which are square and constant (i.e. 1k =
nk = n, Pk _ p, and all matrices are constant), together with both the assumption that
{E, A} is a regular pencil and a set of boundary conditions which yield a unique solution
to (1.1) for any input u(k). In that paper we used the method in [1] to derive a 2n x 2n
Hamiltonian (boundary-value descriptor) system for the optimal smoother assuming also
that the measurement noise covariance R was nonsingular. In addition, we introduced a
new generalized algebraic Riccati equation and showed that if a solution existed to this
equation, the Hamiltonian dynamics could be decoupled leading to parallel forward and
backward recursions reminiscent of the Mayne-Fraser smoothing algorithm. In subsequent
work in developing a system theory for such systems we obtained a set of necessary and
sufficient conditions for the existence and uniqueness of positive definite solutions for this
class of generalized Riccati equations [23, 28] and also provided a statistical interpretation
for this solution. More recently Wang and Bernhard [33] have developed some closely-related
results by dualizing their work on optimal control for descriptor systems [7]. Because of
this perspective, less attention was paid to statistical interpretations of the results, and also
their approach deals with estimating Ex(k) rather than x(k). On the other hand, Wang
and Bernhard consider the more general case in which the pencil {E, A} need not be regular
and in fact may not even be square (so that 1 7 n) and in this context develop analogous
results on filter convergence and Riccati equations to those in [23, 28].
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While the restriction to the estimation of Ex(k) is not significant if E is invertible, it
is substantive if E is singular. Furthermore, as we have hinted, the possible singularity of
E an A, together with the objective of estimating all of x(k), leads directly to the need
to consider the possibility of perfect "measurements" either through the dynamics (1.1)
or the observations (1.2). In this paper, we develop a procedure for optimal recursive
estimation that is valid in the most general framework- with E and A not necessarily
square nor invertible and with possibly singular measurement noise covariances. As we will
see, considering such a problem leads to the introduction of what we refer to as "3-block"
forms for Hamiltonians, filters, and Riccati equations. Such forms actually can be found
in various contexts in a number of papers in estimation and control [3, 4, 5, 14, 22, 32,
34]. Our work builds most directly on the approach of Whittle [34], Chapter 11, and the
machinery for singular estimation in Campbell and Meyer [11] to derive not only a new
3-block Hamiltonian form valid in our general context but also a new 3-block generalized
Riccati equation. In addition in the constant dimension/constant matrix case we develop
convergence and steady-state results for the algebraic version of this equation, thereby
extending the earlier results in [23, 28, 33].

In the next section we present and review some of the basic concepts concerning max-
imum likelihood parameter estimation with particular emphasis on deriving a form that is
valid when some of the measurements are perfect. These results allow us in Section 3 to
address the filtering problem for the system (1.1)-(1.2) resulting in the 3-block form for
the descriptor Kalman filter and a corresponding 3-block Riccati equation. In Sections 4
and 5 we then focus on the time-invariant case. In the first of these sections we generalize
the results in [23, 28, 33] by studying in detail the asymptotic properties of the descriptor
Kalman filter. In particular we provide conditions for filter stability and for the convergence
of the solution to the Riccati equation. Conditions under which the resulting 3-block alge-
braic Riccati equation has a unique positive senmi-definite solution are given, and in Section
5 we generalize the well-known eigenvector approach to solving standard Riccati equations
[31, 32] to our 3-block form. Finally, in Section 6 we show how the estimation procedure
we have developed can be modified to account for the information about x(k) contained in
the future dynamic constraints.

2 A Look at Maximum Likelihood Estimation

In this section we examine a few features of maximum likelihood (ML) linear estimation
beginning with the simple problem of estimating an unknown n-dimensional vector x based
on the p-dimensional measurement vector

y = Hx + v, (2.1)

where v is a zero-mean Gaussian random vector with covariance R. While this is a well-
studied problem, it is worth making a few comments about it. First, note that the study
of this estimation problem actually includes least-squares Bayesian estimation for Gaussian
vectors. Specifically, consider the problem of computing the least-squares estimate of a
Gaussian random vector x with mean m and covariance P based on the measurement
vector z = Cxa + n where n is zero-mean Gaussian, independent of x, with covariance N. It
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is straightforward to check that this problem yields the same estimate as the ML problem
with

Y=( ) ,H= (I R ) . (2.2)

We focus here on the ML viewpoint, which in the next section will lead to our interpreting
dynamic constraints as in (1.1) as additional pieces of information or measurements. A
second point is that we focus here, for the most part, on the case in which x is estimable, i.e.
in which (2.1) provides sufficient constraints so that we can in fact estimate all components
of x. This is equivalent to assuming that H has rank n = dim(x), which, for example, is
aways true in the Bayesian case (i.e. H in (2.2) obviously has rank n).

The third and most important point for us is that we wish to consider ML problems
where R may not be of full rank. If H and R have full-rank, the solution to the ML problem
is easy to write out explicitly:

iML = (HTR-1H)-IHTR-lY. (2.3)

The error variance associated with this estimate is given by

PML = M[(x - iML)(x - iML)T] = (HTR-1H)- 1. (2.4)

The fact that the calculations can be described in such explicit form is extremely im-
portant as it allows us to obtain an explicit recursive structure for sequential estimation
problems. What we would like to do is to obtain an equally explicit form when R is singular.
To do this, we begin by recasting the ML estimation problem as a quadratic minimization
problem. This approach, described by Whittle [34] and by Campbell and Meyer [11], can
also be traced to early optimal control-based derivations of the Kalman filter such as in [6].

Let V be a full-rank square root of R (so that VVT = R). Then we can write v = Vw,
where w is a zero-mean Gaussian random vector with covariance I. If we then view the
measurement

y = Hx + Vw (2.5)

as a linear constraint on x and w, the ML problem is simply one of finding a pair (x, w)
satisfying (2.5) and maximizing the probability density of w or, equivalently, minimizing

J(w) = (1/2)wTw. (2.6)

This problem is readily solved using the Lagrange multipliers. Specifically, let

L(w, x, A) = (1/2)wTw + AT(y - Hx - Vw). (2.7)

Setting the partials with respect to w, x, and A to zero yields

w- VTA = 0 (2.8a)

HTA = o (2.8b)

y-Hx -Vw = 0. (2.8c)

Using (2.8a) to eliminate w gives the 2-block (p + n)-dimensional set of equations

( HT A ) ( )(5)(2.9)



A first obvious question about this set of equations concerns the invertibility of the
(p+ n) x (p+ n) matrix in (2.9). Note that one obvious necessary condition is that H must
have full colunn rank, as otherwise the last n columns would not be linearly independent. A
second immediate necessary condition is that the first p rows must be linearly independent.
The following shows that this pair of conditions is also sufficient.

Lemma 2.1 Let R be positive semi-definite and H a full column rank matrix. Then, if

[R H] has full row rank, the matrix

(HT ) (2.10)

is invertible.

Proof: Suppose that

(X YT ) )= ° (2.11)

Then
xTR + yTHT = O (2.12)

and
XTH = 0. (2.13)

If we now take the transpose of (2.13) and multiply it on the left by yT we get

yTHTx = 0, (2.14)

which after substitution in (2.12) postmultiplied by x yields

xTRRx = 0, (2.15)

which since R is positive semi-definite gives xTR = 0. Together with (2.13), this yields
xT[R H] = 0, which implies x = 0, since [R H] has full row rank. Then (2.12) implies
that yTHT = 0, and since H has full rank we have y = 0, so that (2.10) is invertible. o[

Assuming that (2.10) is invertible, we have from (2.9) that

MLZ= (o 0I) (R HT ) (2.16)

and by direct calculation we find that iML is unbiased and has for error covariance

I)(R H ) R 0 R H 0
P2ML 0 1 H T 0 0 0 H T 0 (2.17)

Writing

0 0 H T 0 - H T 0(2.18)
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we obtain the following simpler expression for PML:

PM _ (0 I T ) H T (2.19)

The condition that [R H] has full column rank has a simple physical interpretation,
namely that there are no redundant perfect measurements (i.e. that no independent linear
combinations of the observations yield noise free measurements of the same linear combina-
tion of components of x). While this would certainly seem to be a reasonable assumption
and can in principle be enforced by identifying redundancies and eliminating them, it is
convenient to have a result that applies even when (2.10) is not invertible2 . In this case,
as one might expect, it is necessary to use pseudo-inverses. As discussed in [11], there are
various sets of properties one can impose in defining pseudo-inverses. For our purposes
here it suffices to take the pseudo-inverse Zt of a symmetric matrix Z to be any symmetric
matrix for which

ZztZ = Z (2.20)

(this is what is referred to in [11] as a (1)-inverse). Then we have the following:

Lemma 2.2 Suppose that H has full column rank. The ML estimate of x based on the
measurement vector (2.1) is given by

ML (= ( )( (HT 0 ) YH (2.21)

This estimate is unbiased and has for error covariance

PML ( I ) o I ' (2.22)

This result is proved in [11], although in our case we can say a bit more. Specifically,
let

( T = UT ). (2.23)

Then in the case where H has full column rank, T is unique, while W and U will not be
unless (2.10) is invertible. Note that from (2.21)

XML = UTy (2.24)

so that the gains in the ML estimator may not be unique- reflecting the fact that there
are nonunique ways in which to determine certain linear combinations of components of x
exactly. On the other hand the resulting error covariance should be unambiguously defined,
and from (2.22), (2.23) we see that it is, since PML = -T. We refer the reader to Appendix

2Indleetl while it llay be easy to keep track of and eliminate redundancies in a, given set of Ineasu remenlcts,
it is more difficult to do this in an organized and easily expressible way when those redundancies mtay ev'olve
dynamically and arise through the dynamic constraints as well as the Imeasuremlents.
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A for a summary of several of the calculations and some results from [11]. In particular, we
prove the identity

(H T 0)=(I) (2.25)

which is used below.
If H does not have full colunm rank, then, as we have indicated, x is not estimable

so that the ML estimate of all of x is undefined. Nevertheless in such a situation various
linear combinations of x may be estimable (e.g. obviously (xI + x 2 ) is estimable from the
observation y = (x 1 + X2)). The precise definition of estimability given in [11] is that the
linear combination of cTx is estimable if there exists a measurement linear combination
dTy that is an unbiased estimate of cTx. An essentially immediate necessary and sufficient
condition for this is that c must be in the range of H T . Let r denote the rank of H and let
H = H 1H2 denote a full-rank factorization of H, i.e. H1 is a p x r full column rank matrix
and H2 is an r x n full row rank matrix. Then it is precisely z = H 2X whose ML estimate
can be computed from y. Furthermore from results in [11] we can deduce that

M 5 (0 I)( H T 0 0 Y ( HT 0 0 Y (2.26)

is an unbiased estimate of z with associated error covariance

PMN e I s HrT rl t p t H2 e i HT f t r H T

Next, we prove several results that provide the justification for the recursive procedure
that will be employed below for computing ML estimates. The first of these results states
that for the purpose of estimating other variables, we can replace several measurements of
a variable by its estimate based on these measurements.

Lemma 2.3 Let x and z be unknown vectors and consider the observations

a = Hx +v (2.28)

b = Jx + Kz+w (2.29)

where v and w are independent, zero-mean Gaussian vectors with covariance matrices V and
W, respectively. Suppose that x is estimable based on (2.28) only, and that z is estimable
based on both (2.28) and (2.29). Let il be the estimate of x based on (2.28), and let P1 be
the associated error covariance matrix. Then t, the estimate of x based on both (2.28) and
(2.29), and its associated estimation error covariance P, are identical to the estimate and
estimation error covariance resulting from estimating x from (2.29) and the observation

xl = x + U (2.30)

where u is zero-mean and Gaussian, independent of w, with covariance P1 .
Furthermore, the estimate 2 and estimation error covariance of z based on (2.28) and

(2.29) are the same as its estimate and error covariance based on (2.29) and (2.30).
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Proof: Since z is estimable from (2.28), H must have full column rank. This, coupled
with the assumption that z is estimable from both (2.28) and (2.29), implies that K has
full column rank. Consider the joint estimation of x and z based on (2.28) and (2.29). If
Aa and Ab denote the Lagrange multiplier vectors associated with observations (2.28) and
(2.29), respectively, according to (2.9) the multiplier vectors and estimates i and z satisfy
the system

V 0 H 0 Aaa
0 W J K Ab b

KHT J ob °- x=Ob (2.31)

O K T 0 0 L 0

We seek to compare this "batch" estimation method, where all the measurements are pro-
cessed at the same time, with the "sequential" approach where we first estimate x based
on (2.28) alone, and then combine the resulting estimate in the form of the summary mea-
surement (2.30) with observation (2.29) in order to estimate both x and z. If Ala and i1
are the Lagrange multiplier vector and estimate of x based on (2.28) alone, and if U1 and
P1 are the associated estimator matrix and error covariance, we see from (2.9) and from
identity (2.25) that they satisfy

(V H Ala Ul a 0 (2.32)
V HT 0 } zil -P1 '- 0 I '

Similarly, the estimates of x and z based on (2.29) and the summary measurement (2.30)
are obtained by solving

P O 0 A
0 W J K Ab b

I jT 0 0 (2.33)

O K T 0 0 f O

where A1 denotes here the Lagrange multiplier vector associated to the measurement (2.30).
What we need to show is that the solution of systems (2.32) and (2.33) combined is equiv-
alent to solving (2.31). This requires eliminating Ala, i1 and A1 from (2.32) and (2.33) and
finding an expression for the variable Aa of (2.31) in terms of these quantities. Note that
our choice of notation already indicates that the variables i, 2 and Ab which appear in both
systems are the same.

First, we observe that the second and fourth block row of (2.31) already appear as the
second and fourth block rows of (2.33), so that we need only to obtain the first and third
block rows of (2.31) from (2.32) and (2.33).

First block row: We multiply the first block row of (2.33) on the left by H. This gives

HP1A1 + Hi = Hi 1 . (2.34)

Now using the identities corresponding to the (1,1) and (1,2) blocks of (2.32), we find

VU1A1 + Hi = a - VAla (2.35)

so that if we denote
Aa Ala + UA1), (2.36)

9



we get the first block row of (2.31).
Third block row: Consider the third block row of (2.33):

A1 + JTAb = 0. (2.37)

Substituting the identities corresponding to the (2,1) and (2,2) blocks of (2.32) inside this
identity, we obtain

HITAa + JjAb = 0 (2.38)

where Aa is defined as in (2.36). But (2.38) is just the third block row of (2.31).
Since the estimates of t and 2 obtained by the batch and sequential methods are identical

functionals of a and b, and the statistical assumptions for a and b are the same under both
methods, the error covariances are the same. o

Note that in the above proof, the assumption that x is estimable from (2.28) was needed
to ensure that the second block column of (2.32) holds. On the other hand, the assumption
that z is estimable from both (2.28) and (2.29), i.e. that K has full rank, was only required
insofar as we wanted to discuss the properties of the ML estimate 2 and the associated error
covariance. It is not necessary if we are only interested in estimable linear combinations of
the entries of z, and the above result can easily be restated in a way that does not require
z to be estimable.

Lemma 2.3 shows that previously processed measurements can be aggregated in the form
of a summary measurement (2.30) for the variables that have been estimated. However the
summary measurement (2.30) will include estimates of variables that do not appear in
subsequent measurements and in which we are no longer interested. Conventional wisdom
suggests that measurements associated to such exogenous variables can be discarded without
affecting the estimation of the other variables. The following result, which is expressed in
its most general form, provides a criterion for dropping unneeded measurements.

Lemma 2.4 Consider the observations

(Y2 ) 2 H2 H3 2 V2(2.39)

where x1 and X2 are two unknown vectors, and [vT vT]T is a zero-mean Gaussian vector
with covariance

R 11 R 12 \

R 2 R 22'

Suppose that H3 has full row rank, and H1 has full column rank. Then the ML estimate of
xz based on both Yl and Y2 is the same as that based on yl alone.

The assumnption that H1 has full column rank is introduced here to guarantee that xz
is estimable from the yl measurement, but it can be removed if we only seek to estimate
estimable linear combinations of the entries of x1.
Proof: Let A1 and A2 be the Lagrange multiplier vectors associated to the Yl and Y2
measurements, respectively, and let x1 and i2 be the estimates of x1 and x2 based on both

10



Yl and Y2. According to (2.9), they satisfy the system

R1 1l R 12 H1 0 Y1
RT R22 H2 H3 A2 Y2
HIT HIT 0 0

0 HaT 0 0 o 2 0

Since H3 has full row rank, the relation H'TA2 = 0 implies that A2 = 0, so that we can
delete the second and fourth block rows and columns from (2.40). This gives

( H T 0) ) (0) (2.41)

which is precisely the system corresponding to the ML estimation of x1 (or estimable linear
combinations of its entries) from yl alone. [

The combination of Lemmas 2.3 and 2.4 provides a general mechanism for generating
ML estimates recursively. Specifically, consider the two observations

a = Hxl + GX2 +v (2.42)

b = Jx + Kz+w (2.43)

where we assume that x1 and X2 are jointly estimable from (2.42), i.e. [H G] has full
column rank, and z is estimable from (2.42) and (2.43), i.e. K has full column rank. As
in Lemma 2.3, we assume that v and w are zero-mean independent Gaussian vectors with
covariance V and W, respectively. From Lemma 2.3, we see that the measurement (2.42)
can be replaced by the summary measurements

i1 = xl +u 1 (2.44a)

i2 = 2 +u2 (2.44b)

where l1 and ;i2 denote the ML estimates of xl and x2 based on (2.42) alone, and the covari-
ance of [uT uT]T is the corresponding estimation error covariance. Then, the ML estimates
of x1 and z based on both (2.43) and (2.44a)-(2.44b) are the same as those derived from
(2.42) and (2.43). But x2 does not appear in observation (2.43), and the system obtained
by combining (2.43) and (2.44a)-(2.44b) satisfies the assumptions of Lemma 2.4, so that for
the purpose of estimating x1 and z we can drop the measurement (2.44b). This shows that
the ML estimates of xz and z based on both (2.43) and the summary measurement (2.44a)
are the same as those based on (2.42) and (2.43). This general procedure, whereby previ-
ously estimated variables are replaced by sumniary measurements, and irrelevant variables
are discarded, constitutes the basis for the descriptor Kalman filtering method of Section 3.

Finally, we prove the intuitively obvious fact that for a given measurement set, if the
noise covariance increases, the error covariance of the ML estimate also increases.

Lemma 2.5 Consider the observations

Y1 = Hx + vl (2.45a)
Y2 = Hz+ v 2 (2.45b)



where v1 and v2 are zero-mean Gaussian vectors with covariances V1 and V2, and suppose
that H has full column rank. Then, if V2 > V1, the estimation error variance associated
with estimating x based on (2.45a) is less than or equal to the estimation error variance for
estimating z based on (2.45b).

Proof: Let 1l, P1 and 32, P2 denote the ML estimates and estimation error covariances
associated with (2.45a) and (2.45b), respectively.

As shown in Appendix A

-2 = U2 Y2, P2 = U2 V2U2 (2.46)

where UT is a left-inverse of H satisfying some additional conditions. Consider then the
following estimate of x:

Z = UTyl. (2.47)

Since UTH = I, this is an unbiased estimate; however it may be suboptimal. Thus

P1 < M[(X - -)(x- )T] = U2TV 1 U2 < UTV 2 U2 = P2 . (2.48)

3 The Descriptor Kalman Filter

We are now in a position to consider the recursive estimation problem for the system (1.1)-
(1.3). As we have indicated, we adopt here an ML perspective, viewing the dynamics (1.1)
and prior density on x(0) as additional measurements. Specifically, we describe in this
section the recursive computation of the filtered estimate i(j) which we define as the ML
estimate of x(j) based on the "measurements" in (1.1) and (1.2) for k = 0, ... , j- 1 together
with the "measurements" provided by the prior information about x(0):

Zo = x(O) + v (3.1)

where Y is zero-mean, Gaussian and independent of u(k) and r(k), and with covariance Po.
Specifically, (3.1) and (1.1), (1.2) for k = 0,...,j - 1 provide us with a set measurements
of the unknown vector [XT(0), XT(1), ..., XT(j)]. Examining this set of measurements we see

that the only terms in these equations involving x(j) are of the form Ejx(j) and C j x(j).

Thus a necessary condition for x(j) to be estimable is that ( ) have full colum rank.

By induction, using the recursive ML estimation procedure outlined in Section 2, and the
fact that x(0) is estimable from (3.1), we can show this is also a sufficient condition for
estimability and, in fact, we can establish the following:

Lemma 3.1 Let Pj denote the error covariance associated with the filtered estimate t(j),
with 2(0) = to and Po given by the prior distribution for x(0). Then i(j + 1) and Pj+l
are respectively equal to the ML estimate of x(j + 1) and its associated estimation error
covariance based on the following observations

y(j + 1) = Cj+lx(j + 1)+ r(j) (3.2)

Ajx(j) = Ej+iz(j + 1)+ Ajv(j)- u(j) (3.3)
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where v(j) is a Gaussian random vector, independent of r(j), with zero mean and variance

Pj.

Applying Lemma 2.1 to (3.2), (3.3) provides us with the 3-block form of the descriptor
Kalmnan filter summnarized in the following:

Theorem 3.1 The filtered estimate i(j + 1) and the corresponding error variance Pj+l can
be obtained from the following recursions:

A PjAT+Qj -Sj Ej+1 A 12(j) \
(j + 1) (0 0 I) -S T Rj Cj+ 1 y(j + 1) (3.4)eyj + l , (3.4)

E T C T o 0

AjP j AT + Qj -Sj Ej+j /oj+ + 0
Pj+j ( o ( -S - Rj Cj+l 0 . (3-5)

EfT+1 Cf+ 1 I

If past and present observations and dynamics do not supply redundant perfect informations,
i.e. when

AjPjAT + Qj Sj Ej+

( 4ST Rj Cj+1 /
has full row rank, then the pseudo-inverse in (3.4), (3.5) is, in fact, an inverse.

Equation (3.4) is the 3-block form of the optimal filter, with the Hamiltonian matrix
being the 3-block matrix whose pseudo-inverse is taken on the right-hand side. Van Dooren
[32] introduced a similar Hamiltonian form in the case in which E = I and R is invertible
(so the Hamiltonian matrix is certainly invertible) and, by a limiting argument suggested
that it was also valid for R singular. Whittle [34], Chapter 11 essentially shows this using
a dual optimization approach as in (2.7)-(2.9) but applied to the dynamic problem directly.
Arnold and Laub [3] also consider such a form for R invertible and E - I but invertible.
Perhaps closer to our work is that of Mehrmann [22] who considers a related Hamiltonian
pencil (which we encounter in Section 5) for the case of E and R singular in the context of
an optimal control problem for singular systems. However, no recursion of the type (3.4) is
presented in [22] and, even more importantly, the 3-block descriptor Riccati equation (3.5)
is not obtained in any of these references. For completeness, we note that Bender and Laub
[4, 5] do introduce a Riccati equation for the case of E singular in the context of an optimal
control problem. However theirs is a reduced-order Riccati equation of size equal to the
rank of E, rather than the full-order Riccati equation (3.5)3.

Finally, we remark that the previously derived results referred to in the introduction are
indeed specializations of (3.4), (3.5). In particular, Wang and Bernhard [33] examine the

case of time-invariant systems, where it is assumed not only that ( E ) has full column

31For this reason we conjecture lhlat there is a. cormiecliojl between the estimation duta.l of rBenlde and Laul)
[4, 5] and the work in [33] in which the focus is on estimating Ex(k). This is only of tangential interest here
andi thus is not pursued.
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rank, but also that ( E Q ) has full row rank, S = 0, and R is invertible. Their analysis

can be interpreted as estimating Ex(j) = Ax(j - 1) + u(j - 1) based on observations y(k)
for 0 < k < j - 1. In this case, they obtain the following Riccati equation for the error
covariance ~Ej of this one-step predicted estimate:

j+=( 0 A ) M ( + CTR-CQ (3.6)

with

j = ET _CTR-1 C )

To see how (3.6)-(3.7) can be obtained from (3.5), note that

Ej = APjA T + Q (3.8)

and thus using (3.5) and the fact that in Wang and Bernhard's case past and present
observations and dynamics do not supply redundant perfect information, we obtain the
following recursion for Ej:

Ej 0 A ( j E)'( T) + Q. (3.9)
CT ET 0 A T

Then the use of standard block-matrix inversion results allows us to express (3.9) as

j+=l (0 A )M (T ) + Q. (3.10)

where Mj is defined as in (3.7). It turns out that (3.10) is a simplified version of (3.6). To
obtain (3.10) from (3.6), note that

jl = ( A)M (o CTR-1C M ( T) 

= (o A)M ( T-( o)V-( AT +Q ) +- ( )=(0 A ) Mh( A TT )-( c) M ( T ) ) 

( O A ) (°

(0 A ) M;-( )-(0 A ) (o ) t ( T )M

AT J(0 I )(A T )

- ( 0 A ) M- ( A) + Q. (3.11)
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If in addition, Ej is invertible, we can express the inverse of Mj in (3.10) in terms of its
block entries, so that

Ej+l = A(ETE1'E + CTR-1C)-lAT + Q, (3.12)

which is the Riccati equation that we had considered earlier in [28]. In the nondescriptor
case (E = I), (3.12) reduces to the standard Riccati equation of Kalman filtering

Ej+l = A(2 -y1 + CTR-lC)- 1AT + Q. (3.13)

4 Stability and Convergence of the Descriptor Kalman Fil-
ter

In this section, we study the asymptotic properties of the descriptor Kalmhnan filter in the
time-invariant case:

Ex(k+ 1) = Ax(k) + u(k), k > O0 (4.1)

y(k+ 1) = Cx(k+1)+r(k), k >O (4.2)

where matrices E and A are I x n, C is p x n, and u and r are zero-mean, white, Gaussian
sequences with covariance

M r(k) r(j) S T R

In particular the results presented in this section generalize those in [23, 28, 33] for descriptor
systems and the usual results for standard causal systems. Note that as in [33] in our
development we do not require that I = n, so that (4.1) need not be square and even if it
is, we do not require {E, A} to define a regular pencil. In the context of viewing (4.1) as
simply providing another source of measurements, we see that it is quite natural to remove
this restriction. Also, as before, we allow the possibility that R is singular as well.

Definition 4.1 The system (4.1)-(4.2) is called detectable if

( sE-tA)

has full column rank for all (s, t) # (0,0) such that Isl > Itl.
It is called stabilizable if

sE-tA Q -S
sC -S T R

has full row rank for all (s, t) #4 (0, O) such that Isl > Itl.
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These definitions generalize other similar definitions in the literature [7, 22]. Note, for
example, that these definitions reduce to the classical notions of detectability and stabiliz-
ability when E = I and R > 0. 4

The following generalizes the usual result that detectability implies the existence of a
stable observer. An important point to note here, however, is that our observer (4.4) is an
explicit causal system, even if (4.1), (4.2) is implicit, a direct consequence of estimability.

Theorem 4.1 Let (4.1)-(4.2) be detectable, then there exists a stable filter

xz(k + 1) = Atx,(k) + K,y(k + 1), x,(O) = to (4.4)

i.e. such that A, is a stable matrix (all eigenvalues have magnitude less than 1) and with

lim M[(x(k) - x(k))(x(k) - zx(k))T ] < oo. (4.5)

Proof of Theorem 4.1: We start the proof by showing the following lemma:

Lemma 4.1 Let (4.1)-(4.2) be detectable. Then there exists a left inverse (Le Lc) of

)C .e.
LeE + LcC = I, (4.6)

such that LeA is stable.

Proof of Lemma 4.1: First note that the lemma is trivially true if C has full column
rank, since we can simply take Le = 0 and L, = a left-inverse of C. Assuming this is not

the case but that ( ) has full rank, we can find invertible I x I and n x n matrices U

and V such that

UEV = E ) (4.7)

CV = ( C2 ) (4.8)

where the partitions in (4.7), (4.8) are compatible, I denotes a square identity matrix, and
C2 has full column rank. If we partition UAV similarly as

UAV= ( All A12 (49)UAV A21 A2 2

the detectability of (C, E, A) implies that

(s/t)I - All 1

-A 2 1

'l this case our detectability condition reduces to ( ) having full colun rank for all sl > 1.

Also, with R > 0 and since ('4.3) implies that. Q = BBT and S = BDT for some matrices B and D,
st.abilizability in this case corresponds to ( sI - A B ) having full row rank for Isl > 1.
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has full column rank for Is/tl > 1, which means that (All, -A 21 ) is detectable in the usual
sense. Thus, there exists a matrix D such that All + DA21 is stable. Next, let F be any
matrix satisfying

FC2 = ( -DE 22 (4.10)

For example, we can take

CL( -DE22C ) (4.11)

where C L is any left-inverse of C2. Then

0 0 0 E22 ) ( (4.12)

and

I D)( All A 12 All + DA2 1 A 12 + DA220 0 A21 A22 0 = (4.13)
which is stable because All + DA12 is stable. Thus by taking

L, = V ( U (4.14a)

L, = VF (4.14b)

the lemma is proved. F

Continuing the proof of the theorem, note that using the above lemma, we can express
x(k + 1) as

x(k + 1) = L,Ax(k) + Lcy(k + 1) + Leu(k) - Lcr(k) (4.15)

where LeA is stable. If we now define

zX(k + 1) = LeAX,(k) + Lcy(k + 1) (4.16)

we can easily see that

lim M[(x(k) - x 8(k))(z(k) - x,(k))T ] = P, (4.17)
k-coo

where Ps is the unique positive semi-definite solution of the Lyapunov equation

P, -(LeA)P,s(,LA) T (Le, L)( _ -S) ( L ) (4.18)

The theorem is thus proved. D

Detectability alone, of course, does not guarantee that the descriptor Kalman filter
converges to a stable filter. However, as would also be expected from what we know for
causal systems, detectability does tell us something about the descriptor algebraic Riccati
equation.
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Theorem 4.2 Let (4.1)-(4.2) be detectable. Then the algebraic descriptor Riccati equation

/ APAT+Q -S E 0

P= ·-(i 0 I) -S T R C 0 (4.19)
ET CT 0 O

has a positive semi-definite solution.

Proof: We prove the existence of a positive semi-definite solution P to (4.19) by showing
that the descriptor Riccati recursion

P1 0 0 I -S T R C 0 (4.20)
E T C T 0 

with Po = 0 is monotone increasing and bounded. This of course implies the convergence of

Pk, which, from (4.20) implies that this limit, which must be positive semi-definite, satisfies
(4.19).5

To see the boundedness of Pk, consider the stable filter (4.16) with xz(0) = ro. It is
then clear that the associated error variance matrices Ps(k) converge asymptotically to Ps

the unique solution of (4.18), and that thanks to the optimality of the descriptor Kahnan
filter, Pk < Ps(k).

We show that Pk is monotone increasing by induction. Clearly

Pi > Po = 0. (4.21)

Now suppose that

Pj > Pj- 1. (4.22)

Pj is the estimation error covariance associated with estimating x(j) based on

At(j - 1) c) + x()±(j-1) (4.23)
y(j) C r(j - 1)

where the covariance of ( (j j)-(j - 1) is AP( jjAT + Q -S ). AlsoP+
r(j - 1) -S T a '

is the estimation error covariance associated with estimating x(j + 1) based on

( y(j + 1) ) (C) +)+ (j) -(j) (4.24)

5The usua.l argument here involves a right-hand side which includes matrix inverses for which we can
deduce convergence by the continuity of the inversion operation. While the full generalized inverse in (4.20)

is not unique, the lower right-hand block is, due to the fact that ( E ) has full column raink. Indeed in

Appendix A we give an explicit forin for this block which involves true inverses (identify (E ) with H it

Appendix A).
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where the covariance of Av(j)-u(j) is (APA T + Q -S . But from (4.22) we
r(j) -S T R

see that
APjAT + Q -S ) APjAT + Q - (4.25)

-ST R S T R (4.25)

and thanks to Lemma 2.5, we conclude that Pj+l > Pj. ol

In what follows it is useful to have available an alternate form for the Kalman filter
equation (3.4), (3.5) in the time-invariant case. Obtaining this requires the following which
is proved in Appendix A:

Lemma 4.2 Let R be a positive semi-definite matrix and H a full column rank matrix.
Then

(o ) ~[(s HO ) (R H O O HO ) ( I )RRt-

and

( HT ) (0 0 (4.27)

Using this result, it is straightforward to verify that the Riccati recursion (4.20) can be
rewritten as

Pj+l = (LjA)Pj(LjA)T ( Lj Kj ) ( ST R )( ) (4.28)

with

/ APAT + Q -SE t ( ) (

Lj Kj ) ( I -ST R C | | (4-29)
ET C T o o 0o 

Thus we have that the descriptor Kalmhnan filter (3.4) takes the form

i(k + 1) = LkAx(k) + Kky(k + 1). (4.30)

Via similar manipulations we can also rewrite the algebraic Riccati equation (4.19) as

P= (LA)P(LA)T + (L K)( T R KT (4.31)

where

L K) (0 0 I -ST R C 0 (432)
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In the following we consider the behavior of the Kalman filter and Riccati equation
when the system is both detectable and stabilizable, obtaining a generalization of well-
known results for causal systems. Note that stabilizability implies that

C ST R

has full row rank, which in turn implies that

E APjAT + Q 5S

C S T R

has full row rank for all Pj > 0, so that in this case the pseudo-inverses in (4.29), (4.32) are
in fact inverses.

Theorem 4.3 Suppose that (4.1)-(4.2) is detectable and stabilizable. Then for any initial
condition Po, the solution Pk of the Riccati equation

Pk+l = (LkA)Pk(LkA) T + ( Lk Kk -)( LST T ) (33)
T Rk K (

/ APkAT +Q -S E t I I
(Lk Kk = 0 0 I) -ST R C I (4.34)

\ E T aT o oC \C 

converges exponentially fast to the unique positive semi-definite sonlution of the algebraic
descriptor Riccati equation

P=(LA)P(LA)T + L K)( QST -S T (435)

~(L K)=(O ( /APAT + Q )-S E t I 
( L K ) = ( OO I ) -ST R C ) tO I (4.36)

Furthermore the steady-state Kalman filter

i(k + 1) = LAt(k) + Ky(k + 1) (4.37)

is stable.

Proof iFrom Theorem 4.2 we know that there is at least one positive semi-definite solution
to (4.35), (4.36). What we would like to show is that this positive semi-definite solution is
unique, that Pj in (4.33,4.34) converges to P exponentially fast for any initial condition Po,
and that the resulting steady-state Kalman filter (4.37) is exponentially stable, i.e. that
LA is a stable matrix. Note that by using (4.27), it is not difficult to show that

LE = I- KC. (4.38)
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Thus premultiplying (4.1) by L, using (4.2) and (4.37), and defining O(k) = x(k) - x(k), we
see that

;(k + 1) = LA9(k) + Lu(k) - Kr(k) (4.39)

so that this will imply the stability of the error dynamics.
Let us first show that LA is stable when P is taken as any positive semi-definite solution

of (4.31). Suppose LA is not stable. Then there exist a complex number A and a complex
row vector v such that JAI > 1 and

vLA = Av. (4.40)

iFrom (4.31) we get that

( - A)v ( - (S T LT ) (4.41)STR KT

where (.)H denotes the conjugate-transpose. Since the right hand side of (4.41) is non-
negative and its left hand side, non-positive, we must have

vc( L K ) Q ST ) . (4.42)

But from (4.38) and (4.40) we have

AvLE = vLA - AvKC. (4.43)

;From (4.42) and (4.43) it follows that

v(L K AE-A Q, =0 (4.44)
AC ST R )=

which since v(L K) y 0 ((4.40) implies vL $ O) contradicts the stabilizability assumption.
Thus LA is stable.

We can next show that there exists a unique positive semi-definite solution of (4.31).
Specifically, suppose that Pl and p 2 are two such solutions, and let [L' K'], [L 2 K 2]
denote the corresponding matrices in (4.32). Then L1A and L 2A both are stable, and, as
shown in Appendix B

pl _ p2 = (L 2 A)(P1 - p2)(LlA)T, (4.45)

so that iterating (4.45)

pl _ p2 = lim (L 2 A)k(Pl - P2 )[(LlA)T]k = 0. (4.46)
k--oo

Finally we can show that Pj converges to P exponentially fast for any initial condition
P0. First note that Pj < Pj where Pj is the error covariance for the problem starting
from Po = O0. We already know that Pj - P. Thus if we can find a sequence Wj so that
Pj < Wj and Wj -- P exponentially fast, we will be finished. We accomplish this by letting
Wj be the error covariance of the estimator defined by the steady-state filter (4.37) for all
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k, starting with the same initial estimate as the optimal Kalman filter. Thus Wo = Po and
Wj > Pj for all j > 0. Furthermore from (4.39)

Wj+ = (LA)Wj(LA) T + (L K) ( T S) (K) (4.47)
-S R K

which, thanks to the stability of LA, converges exponentially fast to the unique positive
semni-definite solution of

Q- R K W = (LA)W(LA)T + (L K) ( _ST R ) ( K ) (4.48)

and a comparison to (4.31) yields that W = P, completing the proof. El

Again we note that the results of this section represent a generalization of those in
[28, 33]. Furthermore they represent what is, to our knowledge, a new derivation for the
more frequently studied singular estimation problem (E = I, R singular).

5 Construction of the Steady State Filter

In this section, we show that the solution of the algebraic descriptor Riccati equation can
be constructed by using the eigenvectors and generalized eigenvectors of the pencil:

E -Q S A O OC S T -R , o o o (5.1)
ET CT(5.1)O A T O O Et CT

A similar pencil was also introduced in [22] for the study of the LQ control problem for
descriptor systems, although 3-block Riccati equations are neither introduced nor studied.

We shall assume throughout this section that the system is detectable and stabilizable.
The results we present here generalize the usual results [17, 31, 32] for standard causal
(E = I) systems for the case of singular measurement noise, and our results of [23, 28] to
the case where R may be singular and in addition {E, A} need not be regular nor even
square. Before beginning, let us introduce the following notation:

F= C K= 0 G -S T R (5.2)

The pencil (5.1) can now be expressed as

{(' OKRT)'(O FT )} (5.3)

and the descriptor Riccati equation as

I KPKT +G FwithO t (5f4
F T 0 

We begin with the following
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Lemma 5.1 The pencil (5.1) is regular and has no eigenmode on the unit circle.

Proof: All we need to show is that for all z on the unit circle,

( -G K ) ( O(5.5)0 K T )+( 0 F T (5.5)

is invertible. Note that thanks to the detectability assumption which can now be stated in
terms of the new notation as: "sF - tK has full column rank for (s, t) : (0, 0) and Isl > Itl",
we can see that F + zK has full column rank for all z on the unit circle. Now suppose that
(5.5) is not invertible, which means that there exist u and v not simultaneously null such
that

( F+zK -G FT u ) 0. (5.6)

If we now let
r= zK+F, (5.7)

from (5.6) it follows that

ru-Gv = 0 (5.8)

rHv = 0. (5.9)

If we now multiply (5.8) and (5.9) on the left by vH and uH respectively and take the
transpose-conjugate of (5.9) and subtract from (5.8), we get

vGvH = 0 (5.10)

which since G is symmetric positive semi-definite implies that Gv = 0. Thus since r has
full column rank, (5.8) implies that u = 0. But we also have that vH(r G) = 0 which
thanks to the stabilizability assumption implies v = 0, contradicting the assumption that u
and v are not simultaneously null. ]

Lemma 5.2 The pencil (5.1) has exactly n stable eigenmodes.

Proof: Let

p(s, t)= det KT-G ))
0 KT 0 F T

= det s (F -G )+t (K 0 ))=det (sF + tK s t )(11)

Then

p(t, s) det F -G )) = det tF + sK -tG ) (5.12)

From

tI sF + tK -sG O I =
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( 2 ) \ S 0 tKT +sFT )T I )/ (5.13)
0 sI tF + sK -tG 0 I '( )

we find
tl+Pp(s, t)t-n = sl+Pp(t, 5)s-n, (5.14)

so that
tlP+-np(s, t)= sl+P-np(t, S). (5.15)

If we denote the number of zero eigenmodes by 6o, stable but non-zero eigenmodes by 6s,
unstable eigenmodes by 6, and infinite eigenmodes by oo, from (5.15) and the fact that
there are no eigemniodes on the unit circle, we conclude that

6s = L (5.16a)

60- = I + p-n. (5.16b)

Finally noting that
60o + 6, + 6, + 6 = n + l + p (5.17)

we get that the number of stable eigenmodes 6o + 6, = n. o

Theorem 5.1 Let the columns of

Y2

form a basis for the eigenspace of the pencil (5.1) associated with its n stable eigenmodes,
i.e.

E -Q -S XA O O
C -S T -R Y = 0 0 0 YJ (5.18)
O A T 0 Y2 0 ET CT Y2

where J is stable. Then, P, the unique positive semi-definite solution of the algebraic Riccati
equation (4.19) is given by

P = X(ETY 1 + CTY2) 1 . (5.19)

Proof: Using notation (5.2) and letting

Y= (tY) (5.20)

we must show that

P = X(FY)-1. (5.21)

To construct a real basis
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and a real stable matrix J satisfying (5.18), we need only to compute the generalized real
Schur decomposition ([15], p. 396)

QT(FT ) Z = M (5.22a)

QT (K Z = N (5.22b)

of the pencil (5.1), where Q and Z are orthogonal matrices, M is quasi-upper-triangular,
N is upper triangular, and where the n x n blocks M, and N, in the decomposition

0 M; , N= 0 N;M=(~ =>N= (s o ) (5.23)

correspond to the stable eigenmodes of the pencil (5.1), i.e. J = N- IM, is stable. Then, if
Z, is the matrix formed by the first n columns of Z, we have

,=y · (5.24)

iFrom (5.18) we have

FX - GY = IXJ (5.25)

KTY = FTYJ. (5.26)

Premultiplying (5.25) by yT and taking into account the transpose of (5.26), we find that
YTFX satisfies the Lyapunov equation

yTFX = yTGy + JTYTFXJ. (5.27)

Let us show that FTY is invertible. Suppose that FTY is not invertible, so that there exists
w 5 0 such that FTYw = 0. Then, from (5.27) we see that

GYw = 0 (5.28)

so that

WTYT ( F G ) = 0. (5.29)

But the stabilizability assumption implies that ( F G ) has full row rank, so that

Yw = 0. (5.30)

Multiplying (5.26) on the right by w and using (5.30) we see that

FTYJw = 0. (5.3-1)

Thus, we have shown that the right null space of FTY is J-invariant. This implies that
there exists an eigenvector w $ 0 of J in the right null space of FTY, i.e.

FTYw = O, Jw = Aw. (5.32)
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Multiplying (5.25) on the right by w and taking into account (5.32) gives

(F - AK)Xw- = 0. (5.33)

Since J is stable, IAI < 1. The detectability assumption then implies that F - AK has full
column rank, so that

Xw = 0. (5.34)

Combining (5.30) and (5.34) yields

(: y) w = O (5.35)

and since ( ) has full column rank, we must have w = 0. This is a contradiction, so

that FTy must be invertible.
Now, if we solve for J in (5.26) and substitute it in (5.25) we obtain

FX = [G + KX(FTY)-K T]Y (5.36)

from which we get

G±+ KX(FTy)-1KT )Q )= F0Y) (5.37)
F T 0 - X '- FTy '

This implies

( -)(F T
y G + KX(FTY)-IKT ) ( ) (5.38)

so that if P = X(FTY) - 1, we have

P 0 I G + KPKT F -1 (539)

i.e. P satisfies the algebraic descriptor Riccati equation (4.19). Since yTFX solves the
Lyapunov equation (5.39), it is positive semi-definite, so that

P = (FTy)-T(yTFx)(FTy)-l (5.40)

is also positive semi-definite. []

6 An Adjusted Estimate to Account for "Future" Dynam-
ics

The estimation problem we have considered in the preceding sections involved the recursive
computation of estimates of x(k) based on dynamics and observations only in the past and
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present. As we have pointed out, descriptor dynamics allow the possibility of noncausal
behavior and thus it also would seem reasonable to consider the recursive computation
of estimates that incorporate future dynamics. Specifically suppose that we now define
the estimate i(j) as the ML estimate of x(j) based on the true measurements (1.2) for
k = 0, ..., j - 1, the "measurement" (3.1) provided by the prior information about x(0), and
the dynamics (1.1) for all k, as opposed to 0 < k < j - 1 as we did previously. In the usual
causal case, i.e. Ik = nk = n, E = I, the inclusion of these "future" dynamics provide no
additional information about x(j), as they provide no constraints on x(j). That is, consider

o = Ej+xi(j + 1) - Ajx(j)- u(j). (6.1)

If Ej+l = I (or more generally, if it is surjective) then since x(j + 1) is completely unknown
in the ML formulation, (6.1) provides no constraint on x(j). However if Ej+1 is singular,
(6.1) does provide nontrivial information about x(j) (e.g. consider the extreme case of
Ej +1 = 0). In general, of course, the situation is even more complex, since x(j + 1) may
also be subject to constraints due to dynamics farther into the future. In the general time-
varying case there is no bound on how far into the future one must look in order to capture
all possible dynamics. In particular in such a case what we would need to do at each time is
to filter backward the "measurements" corresponding to future dynamics in order to obtain
the correct adjustment to the forward filtered estimate developed in the previous sections.
However in the time-invariant case, the structure of the information provided by the future
dynamics, i.e.

Ex(k + 1) = Ax(k) + u(k) k > j (6.2)

is independent of j. In this section we show that in this case we can replace the effect of
future dynamics with just one observation:

Fx(j) = w(j) (6.3)

where w is zero-mean, and F and the covariance V of w are time-invariant. Thus the
problem is to find F and V in terms of E, A and Q (the covariance of u).

Rewriting (6.2) as a matrix equation we obtain

-A E X() U(j)
-A E X(j + 1) u(j + 1) (6.4)

-A E x(j + 2) - u(j + 2) 

The relation (6.4) provides some information not only about x(j), but also about the vectors
x(k) for k > j, which are not directly of interest and can be viewed as exogenous variables.
In order to isolate the information about x(j) that is contained in (6.4), our first step will
be to bring (6.4) to the form (2.39), so that Lemma 2.4 can be applied. This requires using
block row manipulations to eliminate the vectors z(k) with k > j from as many equations
as we can, thereby enabling us to drop the remaining measurements. Specifically, suppose
that

( i -A E( To T1 T2 ... ) -A E -= -ToA 0 0 ... ) (6.5)
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Then, from (6.4), we get
- ToAz(j) = ZTiu(j + i) (6.6)

which is of the form (6.3). So the problem becomes one of finding the highest row rank
matrix satisfying (6.5). We can rewrite (6.5) as

T(z)(zE - A) = -ToA (6.7)

where T(z) = To + zT1 + z2T2 + ... and thus we need to find the polynomial matrix T(z)
of largest rank such that

T(z)(zE - A) = constant matrix. (6.8)

Let us denote the unknown right-hand side of (6.8) by F, and let U(z) and S be respectively
unimodular and permutation matrices for which

U(z)(zE- A)S= ( N(z) K(z) )(6.9)0 0

where N(z) is square and invertible. Then, if we denote

FS = (F F F2 ) (6.10a)

T(z)U-l(z) = ( Tl() T 2(z) ) (6.10b)

we must have

Tl(z)N(z) = F1 (6.11a)

Tl(z)K(z) = F2 (6.11b)

which implies that
K(z)N-l(z)Fl = F2 (6.12)

or equivalently,

( F1 F2 ) ( Z) () ) =0. (6.13)

Constant solutions ( F1 F2 ) to (6.13) can be constructed by noting that if

K()N-I ) p(Z) ) (6.14)

where p(z) is a scalar polynomial and Li's are constant matrices, then (6.13) is equivalent
to

(F, F2 )(Lo L, ... L )= ° (6.15)

Let ( F1 P2 ) be a highest rank solution to (6.15). Let W be the highest rank (full row
rank) matrix for which

WFPN-l(z) = polynomial (6.16)
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Then, let
F1 = WF1 , F2 = W 2. (6.17)

We get

F= (F 1 F2 )S - 1 (6.18)

and
T(z) = ( FN-'(z) T2 (z) ) U(z) (6.19)

where T 2(z) is any arbitrary polynomial matrix. It turns out that, without loss of generality,
we can pick T2(z) = 0. This is due to an implicit assumption that was made throughout
this paper, namely that the dynamic equations are consistent for all possible choices of
inputs u(k), i.e. no constraints on the inputs is imposed by the dynamic equations. It is
straightforward to verify that this requires

Left-ker Q D Left-ker [zE - A], (6.20)

which is called the compatibility assumption.
To see why the compatibility assumption implies that the choice of T 2(z) does not

matter, simply note that thanks to (6.20) we have

( 0 T2(z) ) U(z)Q = 0. (6.21)

Finally, we get
p

Fx(j) = T( j + i) (6.22)
i=1

where Tiz i = T(z). Thus we obtain (6.3) with

p

V= TiQ TT . (6.23)
i=1

Using (6.3), we can construct the "true" or "adjusted" descriptor Kalman estimate by
correcting the result of the Kalman filter to incorporate this additional observation. In
particular using the methods developed in the previous sections, we construct the optimal
estimate i(j) of x(j) based on past dynamics and observations. This "information" is
completely coded by the observation

i(j) = x(j) + v(j), (6.24)

where v(j) is a zero-mean Gaussian vector with covariance Pj, where P - j satisfies the
Riccati equation described previously. If we now add future dynamics, we have to find the
optimal estimate of x(j) based on the observation

( ) = ( ) () + ( ) (6.25)
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Since future dynamics are independent of past dynamics and observations, the new Kalman
estimate x(j) and the corresponding error covariance Pj are given by

0 0 V F) 0 (6.26)1 F T 0 0

and

I 0 V F 0 ) (6.27)
I F T 0 I

7 Conclusions

In this paper we have derived Kalman filtering recursions for a general class of discrete-time
descriptor systems, where the noise covariances were allowed to be singular. By using a
Hamiltonian (or dual) formulation of the ML estimation problem, the optimal filter and
the associated Riccati equation for the error covariance were expressed in 3-block form. In
the time-invariant case, the asymptotic behavior of the optimal filter was examined and
characterized in terms of the corresponding 3-block algebraic Riccati equation. Finally,
under standard detectability and stabilizability conditions, it was shown that the positive
semi-definite solution of the algebraic Riccati equation could be obtained by constructing
the generalized Schur form of a 3-block matrix pencil.

Although we have focused primarily on descriptor systems, it is worth noting that,
because of the 3-block forms we have introduced, our results already present a number of
advantages over existing Kalman filtering techniques for systems with standard dynamics
(E = I) but with singular measurement noise. For example, in the absence of redundant
perfect information, the 3-block filter and Riccati equations of Theorem 3.1 require only
standard matrix inverses, whereas solutions proposed until now require the use of pseudo-
inverses (see [12], section 7.4).

One obvious direction in which the results of our paper can be extended consists in
dualizing our results by considering the descriptor LQ control problem. Preliminary results
in this direction appear in section 6 of [30]. Other interesting results for the descriptor
LQ control problem have been derived by Bernhard, Grimm and Wang [7], and Mehrmann
[22]. Another possible extension would involve considering the continuous-time descriptor
Kalman filtering problem. Unfortunately, the continuous-time version of the problem dis-
cussed here may not be completely meaningful. This is due to the fact that unlike the
discrete-time case, where the singularity of the system dynamics gives rise to a noncausal
impulse response, for continous-time systems the singularity manifests itself by the fact that
the output contains derivatives of the system input. Since for the fitering problem the input
is a white Gaussian noise, the output will contain white-noise derivatives, thereby necessi-
tating a formulation of the filtering problem in terms of generalized stochastic processes.
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Appendix A: Some Results on Block Pseudo-Inverses

Here we summarize and specialize several of the results in [11] concerning the generalized
inverse (in the sense of (2.20)) of the matrix

Z ( R H ) (A.1)

when H has full column rank, i.e. when (HTH) is invertible. Let

Zt= (W U) (A.2)

denote any symmetric matrix satisfying (2.20), which in this case reduces to

RWR + RUHT + HUTR + HTHT = R (A.3)

RWH + HUTH = H (A.4)

HTWH = 0. (A.5)

In [11] the following results are proved:

RWH = 0 (A.6)

D = R - RWR is uniquely determined by R and H (A.7)

HTHT = -D (A.8)

RUHT = D. (A.9)

Note next that from (A.8) and the invertibility of HTH, we have that T is also unique
and given by

T = -(HTH)-lHTDH(HTH)- . (A.10)

Also, from (A.4), (A.6) and the invertibility of HTH

UTH = (HTH)-l(HTH) = I (A.11)

proving (4.27) of Lemma 4.2, so that UT is a left inverse 6 of H. Thus from (2.21)

M(iML) = ( I)( UT T)( ) (A.12)

Also from (2.21)

PML ) I ° ° ) ( I ) (A-13)

6 Note that UT is not an arbitrary left-inverse of H as there is the additional constraint (A.9) that U
muist sa,tisfy.
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However from (A.8), (A.9) and (A.11) we see that

PML = UTDH(HTH)- 1 = -UTHTHTH(HTH)- 1 - -T (A.14)

proving (2.22) as well as (4.26) of Lemma 4.2.
Finally, to prove identity (2.25), we note that by summing (A.8) and (A.9) and post-

multiplying by H(HTH)-1 , we obtain

RU + HT = 0, (A.15)

which when combined with (A.11) gives (2.25).

Appendix B: Derivation of (4.45)

Let
APiAT+ Q - S

ui -=ST R C , = 1, 2. (B.1)
ET CT O0

Then,

- p2 = ( o O I )(Qt- at) 0 (B.2)

,From identity (2.25), there exists A such that

o I= ) 12 (B.3)

so that

Q2n ( ° ) = Q2ftf2 2A (B.4)
I

which using the property (2.20) of pseudo-inverses yields

02 : 0 = ° (B.5)

Similarly we can show that

(0 0 I) slt=( 0 I). (B.6)

Now, by using identities (B.5) and (B.6) in (B.2) we get

P1 - P2 ( O 0 I )Q t(1- Q2)Q ( ) . (B.7)
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But

A(PI _ p2)AT O OI

0A 0 0(A(P1-P) =0 = () A(P1 _P2)AT ( I 0 o ). (B.8)

Thus,

l _p = ( 0 0 ) (O) )A(P1 - P2)AT((I 0 o) ))

= (L 2A)(pl _ PZ)(LAr). (B.9)
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